If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-105y-270=0
a = 15; b = -105; c = -270;
Δ = b2-4ac
Δ = -1052-4·15·(-270)
Δ = 27225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{27225}=165$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-105)-165}{2*15}=\frac{-60}{30} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-105)+165}{2*15}=\frac{270}{30} =9 $
| 2(4x+40)+2(x-1)=66 | | −56m=−60 | | -16=2(w+8)-6w | | -99=3x+7x-9 | | y/3-5=-3 | | m−9=–6m+5 | | −9.5x+0.31=−7.29 | | -(5x+10)=20 | | -55=-11c | | 150=w^2+5w | | 15-5x=85 | | P=45x60 | | k/8.2+85.1=16.8 | | (x−3)(x+3)=(x−3) | | Q+q=23 | | a=5000(1+(0.06/12))^((12)(7) | | 14=-4/5x+5x-7 | | 3-2n=23 | | 7x-80=620 | | 14=-4/5x-7 | | 10x+100=900 | | -1+2b=11 | | -1+3n=8 | | 9k•2=36 | | 5x+7=(15x-1)/3+4/3 | | 3x2+11x-42=0 | | 1/3n+1/6n=27 | | 2x^2-7x=99 | | -1(4+4x)+4(1-x)=7x-3x | | -2j+-10j=48 | | Y-3=z | | 152=-16t^2+154t+110 |